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The most amplified (fundamental) wave and its subharmonics trigger the instabilities of a mixing layer
and its subsequent development. In the present work, an approach for controlling mixing layers1 is extended
to assess the role of amplitude, phase and number of subharmonics of the most amplified wave. In the
earlier study1, a Proportional-Integral-Derivative (PID) control technique applied to a spectral solution was
shown to be capable of rapidly driving the time-developing mixing layer to a target layer thickness, using
the phase shift between the fundamental and its subharmonics as the control parameter. The present study
uses the PID control technique with amplitude of the fundamental as the control variable to control the
thickness of the mixing layer. The PID control demonstrates control of such layers by selectively picking
and modulating the amplitude or relative phases of various modes. The previous study1 demonstrated
that an assessment of the control regime in the temporally developing mixing layer is sufficient for defining
the perturbation envelope for controlling the spatially developing layer. This affords us an efficient way of
defining the spectrum of perturbations that can lead to varying degree of instability of the spatially growing
layer. Hence a variety of different perturbations have been studied in the temporal domain to assess their
effect on the development of the layer. Simulations of spatially growing layer are also performed to support
the conclusions. Additionally, a collective interaction study of spatially growing layer where various modes
yield not just pairing of structures but a collective interaction of more than two structures at a time, has
been carried out that results in an appreciable change in the growth rate of the layer.

Keywords: Free Shear Layer, Mixing Layer, Flow Control, PID Control, Stability Theory, Perturbation
Spectrum.

1 Introduction
Free shear layers or mixing layers have been the subject of intense study for quite some time now2, since
they are present in a host of applications and present an excellent canonical problem for study. Sufficient
knowledge has been gained from these studies to enable us to formulate strategies for their control. It may
be desired to control the flow3 to achieve a certain objective. For instance, the goal might be to increase
mixing in the shear layer in a combustor to enhance mixing4,5 or downstream of a jet6−8, to reduce the
sound emitted by a jet exhaust, to reduce resonance in the flow over a cavity9−13, or to reduce the length of
a separation bubble in the flow over an airfoil or turbine blade14, or to reduce the drag of a bluff body15,16.

In these applications, the incoming shear layer can be laminar or turbulent. In the present work, we
consider inflow base profile described by an error function along with superimposed perturbations calculated
from the linear inviscid theory. The error function profile is typical of free shear flows. In earlier work1 as
well as the present work, the mixing layer is forced using inviscid instability eigenfunctions.
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This paper reports results in continuation of a previous study1, where it was shown that DNS of a
spatially growing free shear (mixing) layer can be performed sufficiently accurately using boundary conditions
mapped17,18 from a time-developing, i.e., streamwise periodic simulation. Earlier PID control results1 using
phase shift as the control parameter are shown in Fig. 1. The phase shift between different harmonics
was sought that leads to a target thickness of the layer at x/λf = 2.5, where λf is the wave length of the
fundamental. This location marks the end of the linear development of the layer and hence is an appropriate
location for the PID control which is a linear control algorithm. In the present study, the phase shifts are
fixed and the amplitude of the fundamental is used as the control parameter, with the amplitudes of the
subharmonics fixed by a given ratio to the amplitude of the fundamental. In one instance, the amplitude of the
fundamental is fixed, and the amplitudes of the subharmonics are changed with respect to the fundamental.
The ordinate in Fig. 1 represents the error, measured by the difference between the set point, target mixing
layer thickness, δtarget, and the iterated layer thickness, δ, and the abcissa represents the phase shift. The
PID control loop that drives the control algorithm is shown in Fig. 2. The error, e(t), is the absolute value
of the difference between the target shear layer thickness and the iterated shear layer thickness, A(t) is the
control output given by the PID control as an updated amplitude of the fundamental perturbation and δ(t)
is the iterated shear layer thickness. For a time level corresponding to the nth PID iterate, t = t0 + (n− 1)ε,
where ε is the time taken by the CFD plant for each PID iteration and t0 is some reference time, the following
expression is calculated

∑
(t) = KP e(t) +KI

∫ t

t0

e(τ)dτ +KDde(t)/dt

where e(t) = δn - δtarget, and
∑

(t) denotes the sum of the proportional, integral and derivative components
of the PID control loop at time, t. It is assumed here that the PID loop takes infinitesimally small amount
of time outside of the CFD plant. Thus, the new amplitude, An = An−1+

∑
(t). The gain coefficients are

chosen initially by trial and are reduced as the iterations converge.

2 Results

2.1 Mixing Layer with a Velocity Ratio, r= 0.5
The role of perturbations imposed near the origin of a two-dimensional free shear layer with a velocity ratio,
r (utop/ubottom) = 0.5 will be discussed in the following paragraphs. This choice of velocity gives ∆u/um =
0.66, where ∆u = 2 and um = 3. The unit of velocity is half of the shear across the layer. The initial velocity
profile is an error function, superposed on which are eigenfunctions from the linear inviscid stability theory
corresponding to various unstable modes. The Reynolds number based on the initial shear layer thickness
is 50. Many experimental investigations19−23 have been carried out at or around this velocity ratio. This
allows us to compare experimental data with the present direct numerical simulation (DNS) results. The
experimental data19 show that there is a distinct difference in spreading rate and velocity profiles between
the forced and the unforced mixing layer. Further, the effect of initial conditions has a lasting effect on the
development of the mixing layer19. In another experimental study20, the development of large eddies in the
turbulent mixing layer have been observed to be governed by an inviscid instability at fairly large Re. As a
matter of fact, mixing layer has been observed24 to be turbulent at moderate Reynolds number. In free shear
layer flow, stability of disturbances calculated from the linear theory has been shown25 to be independent
of Re beyond the value of 50, based on the initial shear layer thickness. Much of the experimental evidence
points to the fact that the dynamics of the large scale structures in a mixing layer is predominantly two-
dimensional, and that the entrainment of fluids into the mixing layer from outside is determined by these
large structures26. It is this initial two-dimensional region of the mixing layer that we seek to control.

2.1.1 Influence of Relative Amplitudes of Different Harmonics

Various cases were studied where forcing levels of fundamental and its subharmonics were varied within
the constraints of the linear theory, especially that of the fundamental. This is achieved by limiting the
amplitude of the perturbation vertical velocity, v′, at the midplane, y = 0, to be less than 1 percent of the
unit velocity.
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A revealing finding was made during this study that the amplitudes of the subharmonics can be prescribed
at levels outside of the linear range, since they tend to remain dormant during the initial linear development
of the layer, especially third and higher subharmonics of the fundamental. Progressively higher forcing
levels can be imposed initially for higher subharmonics. This gives us a broad control regime to control the
subsequent development of the layer in a rigorous tractable fashion. However, in practice, an actuator can
provide forcing at higher levels that does not obey the linear limit. An investigation is currently underway
that runs simulations27−29 with initial conditions that match the experimental conditions30,31. In these DNS
studies, velocity profiles (base flow + perturbation) will be extracted from the experimental data.

First, a comparison of profiles of momentum thickness, θ(t), and visual (streamline) thickness, h(t) (also
denoted by δ(t)), is shown in Figs. 3(a) and 3(b), respectively, with three different forcing levels in the linear
regime. Visual thickness is defined by the lateral extent of the largest closed instantaneous streamline, also
known as the zero streamline, in the temporal domain. As the forcing level of the fundamental is increased
from 0.9 percent to 4 percent, the growth rate of the layer increases. The growth rate of the mixing layer
is defined by the average slope of the θ - time profile or the h - time profile. Next, fixing the fundamental
wave forcing level at 0.9 percent and varying the forcing levels of the subharmonics, a larger growth rate
of the layer is realized as shown through momentum thickness and visual thickness profiles in Fig. 4(a)
and Fig. 4(b), respectively. When forcing levels of both subharmonics are increased to 4 times that of the
fundamental, the largest growth rate is observed. When the forcing level of only the first subharmonic is
increased, rate of growth is larger than when only the third subharmonic forcing level is increased; but, a
larger lateral extent of the second paired structure is realized in the latter case, as expected. It turns out that
the first subharmonic rather than the fundamental or the third subharmonic is most crucial in determining
the growth rate of the layer. Due to recent advances in actuation such as provided by DBD actuators, it is
now practical to provide actuation at individual frequencies, and hence a direct comparison between DNS
and experiment can be made.

2.1.2 Influence of Relative Phase Shifts of Different Harmonics

The influence of relative phase shifts is most pronounced in determining the rate of growth of the layer.
Fig. 5 shows that the phase shift of π between the subharmonics and the fundamental leads to dramatic
suppression of the layer growth. The baseline, shown in magenta, being the case of zero phase shift, gives
the largest growth rate of the layer at given forcing levels. The next best is the case of a phase shift of π/4,
shown in blue. A phase shift of π/2 leads to a delayed growth of the layer with the first pairing substantially
delayed. Fig. 6(a) shows that the phase shift between the fundamental and the first subharmonic is crucial
in determining the growth rate of the layer. A phase shift of π between the fundamental and the first
subharmonic leads to practically the same result as shown in Fig. 5 where both the subharmonics are shifted
by π from the fundamental, once again highlighting the important role played by the first subharmonic. Fig.
6(b) shows results for the case where phase shift between the third subharmonic and the fundamental is
considered. The results for a phase shift of π/2 are almost identical with those with the first subharmonic
being out of phase by π with the fundamental, as expected, since the second subharmonic is an exact mutiple
of the third subharmonic. Phase shift of π yields results identical to the baseline (phase shift equal to zero).

The effect of phase shift of both the first and the third subharmonics is more pronounced as shown in Figs.
7 and 8(a,b) via visual (streamline) thickness plots. Whereas the phase shift of π/4 yields results close to the
baseline results, a phase shift of π/2 gives visual thickness markedly different from its momentum thickness
counterpart, since the peak visual thickness is significantly below that corresponding to the baseline, unlike
the momentum thickness peak which is greater than the baseline momentum thickness. Visual thickness
evolution is similar to the momentum thickness evolution for phase shift of π. Again, there are differences
in the visual thickness and momentum thickness profiles as shown in Fig. 8(a,b) and Fig. 6(a,b), the main
difference being that the phase shift of π gives visual thickness markedly different from the baseline visual
thickness.

2.1.3 Collective Interaction

So far we have discussed the mixing layer dynamics based on successive binary pairings of structures. The
baseline case corresponds to zero phase shift of the three wave lengths and amplitudes, A1=0.9 percent,
A2 = A3 = 0.5A1. We will consider this baseline case and introduce a fourth wave number into the
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perturbation spectrum. This corresponds to the first fractional subharmonic of the fundamental, with three
waves spanning four fundamental waves. A DNS of the spatially growing layer is performed using the
EDLFLOW solver27−29. The EDLFLOW solver directly simulates the mixing layer in the spatial domain.

The dynamics following the prescription of this superposed wave spectrum at the inflow boundary leads
to an interesting development of the layer where three rolled up vortices corresponding to the fundamental
merge together, instead of two vortex structures pairing at a time. This collective interaction leads to a
larger growth rate of the layer compared with the baseline case, as shown in Fig. 9. Corresponding spatially
growing passive scalar and vorticity contours are shown in Figs. 10 and 11, respectively. It is shown clearly
through these two contour plots that three rolled up structures coalesce together to form a bigger structure,
thus leading to higher growth rate of the layer. This phenomenon was observed by Ho and Huang19 in their
experiment. For a comparison, passive scalar and vorticity contour plots corresponding to the baseline DNS
of spatialy growing layer case are shown in Figs. 12 and 13.

2.2 Mixing Layer with a Velocity Ratio, r= 0.28
The results presented so far correspond to a velocity ratio of 0.5. Next, a velocity ratio of 0.28 was chosen to
make some initial comparison with the experiment of Ely and Little30,31. Other studies around velocity ratio
of approximately 0.28, notably24,32, were carried out earlier. The influence of velocity ratio on the growth
rate of a mixing layer was observed to be significant33.

In the present case, a fundamental and its first subharmonic were considered that lead to one pairing,
since that corresponds to experimental conditions30,31. Four different forcing levels were chosen, as shown
in the momentum thickness plot in Fig. 14(a). The axes of the DNS results are scaled to match the location
of the first pairing as observed in the experiment. After the initial linear development, the slope of the θ-x
curve is about 0.03, in approximate agreement with the experiment for actuation conditions, as shown in Fig.
14(b). It is noted here that the experiment has been conducted with the actuation imposed at a location
near the origin which is not the same location as the origin of the free shear layer corresponding to the DNS.
So we should not expect an exact quantitative agreement, only the trends should agree. As expected, higher
forcing levels lead to higher growth rates, although the growth rate is not significantly affected as in the case
of lower velocity ratio, as shown earlier. The growth rate given by the experimental baseline conditions tends
to be smaller than the DNS results. That is expected since the forcing levels of imposed perturbations with
DNS are higher than those present in the unforced layer in the experiment. An interesting observation made
here is that the growth rate of the layer given by the average slope of the θ − x curve shown in red in Fig.
14(a) is in inverse proportion to that for the velocity ratio of 0.5, as shown in Fig. 3(a). Similar trend in the
maximum growth rates was also found in an earlier study33 that the growth rate increases proportionally to
the velocity ratio.

Fig. 14(b) shows a direct comparison between the experiment30,31 and the DNS results. As pointed
out earlier, higher forcing levels were used in the experiment. So we should expect some mismatch between
DNS and experiment. At the location, x = 450 mm, first pairing was observed in the experiment. This
fact was used to scale the DNS results for comparison with the experiment. The slope of the DNS curve
after x=300 mm is about the same as that shown by experimental data for actuation conditions. More
detailed comparisons with the experiment30,31 and DNS will be made in a forthcoming paper. In the initial
development of the momentum thickness profiles predicted by the DNS, we observe a linear growth indicated
by the exponential growth of the profiles, which is not observed in the experiment. The reason for this is
that the actuation in the experiment is applied at higher levels so that the linear development is bypassed.

2.3 PID Control
Results corresponding to the PID control are shown in Fig. 15(a,b). Fig 15(a) shows how the target shear
layer thickness is iteratively reached within a given number of iterations, beginning with an arbitrarily
picked initial state. The control parameter is the amplitude of the fundamental wave length with a fixed
ratio between the amplitudes of the subharmonics and the fundamental. The target state, shown in red
symbols, is matched almost exactly by the converged (final) state shown in yellow. The initial state is shown
in black. The resulting amplitude convergence history is shown in Fig. 15(b), where after a given number of
iterations, as the amplitude changes with each iteration (shown along the abscissa) , the error shown along
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the ordinate monotonically reaches sufficiently close to zero. The converged value of the amplitude of the
fundamental is shown to reach the desired value.

3 Concluding Remarks
Perturbations of different frequencies with given amplitude and phase were imposed on a diffused tangential
velocity discontinuity in the temporal domain. The subsequent development of the mixing layer was tracked
through the momentum and visual thickness plots. Some quantitative information was obtained, especially
with respect to the role of the first subharmonic of the fundamental wave. The relative effects of the unstable
modes on the development of the mixing layer was measured computationally. A subset of these perturbation
sets was also imposed near the origin of the mixing layer and DNS of the layer was carried out directly in
the spatial domain. Differences between the baseline and collective interaction cases were highlighted. The
collective interaction leads to a higher growth rate of the spatially growing layer compared with the binomial
interaction (pairing). PID control of a baseline binomial case was demonstrated with the amplitude control
as the control parameter.
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5 Figures
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Figure 1: Phase control of the mixing layer; taken from Ref. 1. Iterates proceed from right to left and are
represented by the symbols.

Figure 2: PID block diagram: amplitude control of the mixing layer thickness; e(t) = |δ(t)− δtarget|.
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Figure 3: Thickness profiles: baseline case (zero phase shift) with imposed perturbations in the linear range.
A1, A2 and A3 are the amplitudes of the fundamental, first and third subharmonics.
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Figure 4: Thickness profiles: relative comparison of fundamental, its first and third subharmonic.
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Figure 5: Momentum thickness profiles: role of phase shift among fundamental, its first and third subhar-
monics.
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(a) fundamental and 2nd subharmonic (b) fundamental and 3rd subharmonic

Figure 6: Momentum thickness profiles: selective phase shifts between harmonics.
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Figure 7: Visual thickness profiles: role of phase shift among fundamental, its first and third subharmonics.
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(a) fundamental and 2nd subharmonic (b) fundamental and 3rd subharmonic

Figure 8: Visual thickness profiles: selective phase shift between harmonics.
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Figure 9: Momentum thickness profiles: a comparison of collective coalescence with baseline pairing
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Figure 10: Passive scalar contours showing collective interaction, calculated using spatially developing sim-
ulation (EDLFLOW).
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Figure 11: Vorticity contours showing collective interaction, calculated using spatially developing simulation
(EDLFLOW).
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Figure 12: Passive scalar contours showing pairing, calculated using spatially developing simulation
(EDLFLOW).

12

D
ow

nl
oa

de
d 

by
 U

pe
nd

er
 K

au
l o

n 
Ju

ly
 1

7,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
22

22
 



 Instantaneous Vorticity Contours 

 

 

0 5 10 15 20 25 30

−2

−1

0

1

2

−5

0

5

10

x 10
−4

Figure 13: Vorticity contours showing pairing, calculated using spatially developing simulation (EDLFLOW).

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

x, mm

θ
, 
m

m

Momentum thickness:DNS (r =0.28)

 

 
A

2
=0.5*A

1

A
2
=A

1

A
2
=2*A

1

A
2
=4*A

1

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

18

x, mm

θ
, 
m

m

Momentum thickness:comparison with experiment

 

 
DNS: A

2
=2*A

1

DNS: A
2
=4*A

1

exp−baseline(Ely−Little,2013)

exp−actuation−12kV(Ely−Little,2013)

exp−actuation−16kV(Ely−Little,2013)

(a) DNS results (b) DNS comparison with experiment

Figure 14: Momentum thickness profiles: effect of forcing levels on fundamental and the first subharmonic,
r = 0.28
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Figure 15: PID Iteratioons leading to the target state
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